

E-ISSN 2808-5841 P-ISSN 2808-7283

Multivariate Analysis of Variance pada Faktor yang Mempengaruhi Pendanaan dan Valuasi Startup

Ibrahim Frosly Alesandro¹, Naufal Harith², Alisha Deana Tabina³, Dinda Galuh Guminta⁴, Ulfa Siti Nuraini⁵

1,2,3,4,5 Sains Data, Universitas Negeri Surabaya

¹ibrahim.23021@mhs.unesa.ac.id

²naufal.23016@mhs.unesa.ac.id

³alishadeana.23244@mhs.unesa.ac.id

⁴dindaguminta@unesa.ac.id

⁵ulfanuraini@unesa.ac.id

Corresponding author email: ulfanuraini@unesa.ac.id

Abstract: This study aims to analyze the effect of industry sector and exit status on startup performance, as measured by funding volume and startup valuation. In addition, this study also considers covariate variables such as startup age, number of employees, and market share to provide a deeper understanding of the factors that influence startup success. The data used comes from public platforms and covers 500 recent startups across various regions, including Asia, Australia, Europe, North America, and South America. Through the MANOVA and MANCOVA multivariate statistical approaches, it was found that industry sector and market share have a significant influence on the combination of funding and startup valuation, while exit status showed no significant influence. These findings indicate the important role of industry and market competitiveness in determining startup success. The E-Commerce and Internet of Things (IoT) sectors are clear examples of high sensitivity to market share. Post-hoc analysis also shows that the valuation of the E-Commerce sector is significantly higher than the AI sector. Practical implications can be seen from the successful IPOs of major e-commerce startups in Indonesia such as Bukalapak and GoTo, which received positive responses from investors. Therefore, contextual factors such as industry type and market power should be a key consideration in startup investment strategies.

Keywords: Startup, funding, valuasi, MANOVA, MANCOVA.

Abstrak: Penelitian ini bertujuan untuk menganalisis pengaruh sektor industri dan status exit terhadap kinerja startup, yang diukur melalui volume pendanaan dan valuasi startup. Selain itu, penelitian ini juga mempertimbangkan variabel kovariat seperti umur startup, jumlah karyawan, dan pangsa pasar (market share) untuk memberikan pemahaman yang lebih mendalam mengenai faktor-faktor yang memengaruhi kesuksesan startup. Data yang digunakan berasal dari platform publik dan mencakup 500 startup yang terbaru tersebar di berbagai kawasan, termasuk Asia, Australia, Eropa, Amerika Utara, dan Amerika Selatan. Melalui pendekatan statistik multivariat MANOVA dan MANCOVA, ditemukan bahwa sektor industri dan pangsa pasar memiliki pengaruh signifikan terhadap kombinasi pendanaan dan valuasi startup, sementara status exit tidak menunjukkan pengaruh yang signifikan. Temuan ini menunjukkan pentingnya peran industri dan daya saing pasar dalam menentukan kesuksesan startup. Sektor E-Commerce dan Internet of Things (IoT) menjadi contoh nyata sensitivitas tinggi terhadap pangsa pasar. Post-hoc analysis juga menunjukkan valuasi sektor E-Commerce secara signifikan lebih tinggi dibandingkan sektor AI. Implikasi praktis terlihat dari keberhasilan IPO startup e-commerce besar di Indonesia seperti Bukalapak dan GoTo, yang mendapat respons positif dari investor. Oleh karena itu, faktor kontekstual seperti jenis industri dan kekuatan pasar harus menjadi pertimbangan utama dalam strategi investasi startup.

Kata kunci: Startup, pendanaan, valuasi, MANOVA, MANCOVA

I. PENDAHULUAN

Indonesia saat ini menjadi salah satu negara dengan ekosistem startup terbesar dan paling dinamis di dunia. Berdasarkan data Startup Ranking, Indonesia menempati peringkat keenam secara global dengan jumlah startup sekitar 3.037 perusahaan pada pertengahan tahun 2025 [1][2]. Hal ini menunjukkan bahwa Indonesia telah menjadi rumah bagi startup makro seperti Ruangguru, Alodokter, Tokopedia, Gojek, dan lain-lain yang memiliki kontribusi signifikan dalam mendorong pertumbuhan ekonomi digital nasional. Perkembangan pesat ini tidak terlepas dari dukungan berbagai pihak, mulai

E-ISSN 2808-5841 P-ISSN 2808-7283

dari pemerintah yang semakin ramah terhadap inovasi digital, hibah publik, pendanaan korporasi, hingga peran investor swasta yang mendorong akselerasi sektor digital secara masif [3].

Namun demikian, di balik perkembangan tersebut, tantangan besar masih melanda ekosistem startup, khususnya dalam hal pendanaan. Munculnya fenomena "Tech Winter" atau musim dingin teknologi telah ditandai oleh penurunan investasi dan inovasi secara global pada startup berbasis teknologi [4]. Tech Winter adalah penurunan minat investor terhadap sektor teknologi yang ditandai dengan PHK massal dan pertumbuhan bisnis stratup yang melambat [5]. Pola historis juga menunjukkan bahwa pemotongan dana secara drastis dalam masa Tech Winter dapat memicu penurunan signifikan dalam hal inovasi, keberlanjutan proyek, dan pertumbuhan bisnis secara keseluruhan [6]. Ketidakpastian ekonomi, fluktuasi pasar modal, serta keraguan investor terhadap profitabilitas jangka panjang dari startup yang masih dalam tahap awal pertumbuhan membuat fenomena tersebut semakin parah [7]. Kehadiran teknologi mutakhir seperti Artificial Intelligence (AI) yang sedang menjadi perhatian utama masyarakat, juga menghadirkan risiko yang belum dapat diperkirakan secara pasti. Hal ini membuat sebagian besar investor menjadi lebih selektif dan berhati-hati dalam menanamkan modal mereka [6]. Sentimen negatif yang berkembang terhadap teknologi baru tersebut menimbulkan kekhawatiran akan transformasi digital yang belum tentu memberikan jaminan keberhasilan. Oleh karena itu, para pelaku startup dituntut untuk memiliki kemmampuan merancang strategi keberlanjutan yang tidak hanya mengandalkan dana eksternal, melainkan juga mengutamakan efisiensi operasional, diversifikasi produk, dan pemanfaatan sumber daya yang optimal [8]. Dalam konteks ini, kategori sektor industri dan exit status dinilai menjadi faktor yang mempengaruhi volume pendanaan dan evaluasi startup. Setiap sektor industri memiliki daya tarik dan tingkat risiko yang berbeda di mata investor sehingga berdampak langsung pada seberapa besar dan seberapa sering startup di sektor terkait mendapatkan pendanaan. Sektor-sektor seperti fintech, healthtech, dan e-commerce cenderung lebih mudah menarik minat investor karena potensi pertumbuhan pasar dan inovasi yang tinggi [9]. Dalam dunia startup, "exit status" merujuk pada fase akhir perjalanan sebuah startup bagi para pendiri dan investor awal. Exit adalah momen ketika startup "keluar" dari tahap pengembangan awal dengan memanen keuntungan, biasanya melalui mekanisme seperti IPO (Initial Public Offering) atau akuisisi oleh perusahaan lain [10]. Exit yang sukses menunjukkan kinerja dan pertumbuhan yang baik, sementara gagal exit mencerminkan risiko dan kegagalan bisnis [11].

Namun, hubungan antara pendanaan dan pendapatan startup tidak selalu bergantung pada sektor industri saja. Faktor lain seperti exit status dan variabel kontrol seperti umur berdirinya startup, jumlah karyawan, serta market share juga berpengaruh terhadap kinerja bisnis startup. Market share atau pangsa pasar berguna untuk mengukur seberapa besar proporsi pasar yang dikuasai oleh suatu startup dibandingkan pesangnya, seringkali digunakan sebagai indicator daya saing dan kekuatan bisnis. Startup dengan market share yang besar cenderung memiliki posisi yang lebih stabil dalam industri dan lebih menarik bagi investor [12]. Penelitian ini menggunakan metode Multivariate Analysis of Variance (MANOVA) dan Multivariate Analysis of Covariance (MANCOVA) untuk menganalisis faktor-faktor yang berpengaruh terhadap valuasi dan pendanaan yang diperoleh. Metode MANCOVA digunakan untuk menguji pengaruh yang sama dengan mempertimbangkan variabel control seperti umur berdirinya startup. Dengan pendekatan ini, penelitian diharapkan memberi pemahaman yang menyeluruh tentang faktor-faktor yang mempengaruhi kesuksesan startup, khususnya dalam konteks pertumbuhan di era digital. Temuan dari penelitian ini diharapkan dapat membantu investor dalam menilai potensi pendanaan dan valuasi berdasarkan sektor industri, serta memberikan masukan yang relevan bagi pembuat kebijakan dalam merancang strategi pengembangan ekosistem startup yang lebih tepat sasaran dan berkelanjutan.

E-ISSN 2808-5841 P-ISSN 2808-7283

II. METODE PENELITIAN

2.1. Deskripsi Data

Data pada penelitian ini memberikan gambaran menyeluruh mengenai pertumbuhan startup, tren pendanaan, valuasi, serta profitabilitas di berbagai sektor industri. Unit penelitian terdiri dari 500 startup dari berbagai negara di dunia, termasuk kawasan Asia dan Australia. Secara umum, dataset ini dimanfaatkan oleh peneliti, analis, maupun pelaku usaha untuk memahami faktor-faktor yang mempengaruhi keberhasilan sebuah startup. Dataset ini diperoleh dari platform Kaggle dengan rincian variable penelitian pada Tabel 1 terdiri dari variabel dependen, variabel faktor, dan kovariat.

Table 1. Variabel Penelitian

No	Jenis	Variabel	Deskripsi	Tipe Data
Y1	Dependen	Pendanaan	Total banyaknya dana yang diterima	Rasio
Y2		Valuasi (M USD)	Valuasi startup setelah pendanaan (USD)	Rasio
X1	Faktor	Industri	Sektor industri startup	Nominal
X2		Exit Status	Status akhir startup (Privat, IPO, Akuisisi)	Nominal
X3	Kovariat	Karyawan	Jumlah karyawan (5 hingga 5000)	Rasio
X4		Market Share (%)	Persentase pangsa pasar yang dimiliki	Rasio
X5		Umur	Umur berdirinya startup (dalam tahun)	Rasio

2.2. Uji Asumsi MANOVA dan MANCOVA

2.2.1. Uji Normalitas Multivariat (Mardia Test)

Uji normalitas multivariat dilakukan menggunakan *Mardia's Test* melalui. Uji ini menguji dua aspek utama dari normalitas multivariat, yaitu skewness dan kurtosis [13]. Berikut hipotesis yang digunakan.

 H_0 : Data berdistribusi normal multivariat

 H_1 : Data tidak berdistribusi normal multivariat

Syarat keputusan yaitu data mengikuti distribusi normal multivariat ketika p-value $> \alpha$.

2.2.2. Uji Homogenitas (Box's M Test)

Uji homogenitas matriks kovarians dipakai supaya dapat mengetahui apakah matriks kovarians dari variabel dependen sama di seluruh kelompok pada variabel independen (kategori) [14]. Hipotesis pengujian *Box's M Test* adalah sebagai berikut.

$$H_0: \Sigma_1 = \Sigma_2 = \cdots = \Sigma_k$$

 H_1 : minimal terdapat satu $\sum_i \neq \sum_i untuk \ i \neq j$

Data akan dikatakan homogen ketika nilai p-value $> \alpha$.

2.2.3. Uji Dependensi

Uji ini dilakukan untuk mengetahui adanya korelasi yang signifikan antar variabel dependen, yang merupakan salah satu asumsi penting dalam MANOVA [15][16]. Hipotesis pengujian *Bartlett* adalah sebagai berikut.

 H_0 : Antar variabel tidak ada korelasi

 H_1 : Antar variabel terdapat korelasi)

Syarat penolakan yaitu tolak H_0 jika p-value $< \alpha$. Keputusan tolak H_0 menunjukkan bahwa terdapat dependensi antar variabel

2.3. Two-Way MANOVA

Multivariate analysis of variance (MANOVA) merupakan metode statistika yang bertujuan untuk melihat efek utama dan efek interaksi variabel kategorik pada variabel dependen. MANOVA

E-ISSN 2808-5841 P-ISSN 2808-7283

dipilih karena mampu mengidentifikasi efek utama maupun interaksi antar variabel kategorik terhadap beberapa variabel dependen secara bersamaan [17]. Hal ini sangat relevan untuk konteks data startup, yang umumnya tidak memenuhi asumsi klasik seperti normalitas dan homogenitas kovarian. Pelanggaran asumsi ini dapat mengurangi validitas hasil karena statistik inferensial seperti F-test menjadi kurang akurat. Untuk mengatasi hal ini, uji signifikansi dilakukan menggunakan Pillai's Trace, yang dikenal lebih robust terhadap pelanggaran asumsi dibandingkan statistik lainnya seperti Wilks' Lambda [18]. Berikut adalah persamaan umum MANOVA [19].

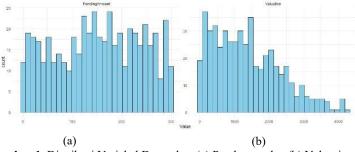
$$Y_{lk} = \mu + \tau_l + \beta_k + (\tau \beta)_{tk} + \varepsilon_{tk}$$
 (1)

dimana μ adalah matriks nilai rataan umum, τ_l dan β_k masing-masing adalah matriks pengaruh dari faktor 1 dan 2 pada level ke-l terhadap variabel dependen, $\tau\beta_{lk}$ adalah matriks pengaruh faktor interaksi terhadap variabdel dependen, dan ε_{lk} adalah matriks residual atau pengaruh *error*. *MANOVA* digunakan untuk menguji pengaruh variabel independen seperti Sektor Industri dan *exit status* terhadap volume pendanaan dan valuasi startup.

2.4. *MANCOVA*

MANCOVA merupakan pengembangan *MANOVA* yang mengontrol variabel seperti jumlah karyawan, umur startup, dan *market share*. Dengan mengontrol variabel-variabel ini, MANCOVA mampu mengurangi variabilitas yang tidak relevan terhadap variabel dependen, sehingga meningkatkan akurasi dan validitas hasil [20].

2.5. ANOVA dan ANCOVA


Evaluasi univariat menggunakan *ANOVA* dan *ANCOVA* untuk memberikan analisis yang lebih spesifik pada tiap variabel dependen [19][21].

2.6. Analisis Post-Hoc

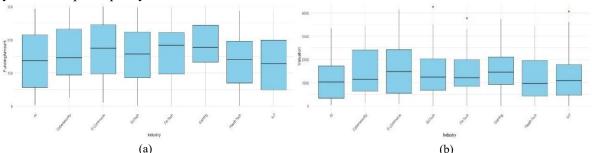
Perbandingan uji post-hoc pairwise comparisons dengan koreksi Tukey (perbedaan signifikan Tukey) dipilih karena mampu mengontrol kesalahan tipe I dapat dikontrol secara efektif saat dilakukan banyak perbandingan antar kelompok [22]. Koreksi ini menjadi penting mengingat jumlah kategori industri yang dianalisis cukup banyak, sehin gga potensi terjadinya kesimpulan yang salah akibat multiple comparisons meningkat secara substansial. Untuk memastikan validitas analisis, dilakukan regresi linear secara terpisah per industri agar dapat mengevaluasi pengaruh kovariat terhadap masingmasing variabel dependen [23].

III. HASIL DAN PEMBAHASAN

3.1. Karakteristik Data

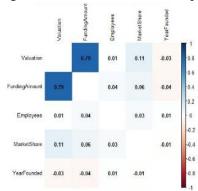
Gambar 1. Distribusi Variabel Dependen, (a) Pendanaan dan (b) Valuasi

Rata-rata pendanaan startup yaitu sekitar 152.66 juta yang menunjukkan bahwa setengah startup memperoleh pendanaan antara 79.21 juta dan 226.45 juta. Terlihat juga nilai median yang


E-ISSN 2808-5841 P-ISSN 2808-7283

hampir sama dengan mean menunjukkan bahwa distribusi pendanaan cukup simetris seperti pada Gambar 1 (a). Valuasi startup menampilkan pola yang sangat bervariasi, dengan rata-rata yang lebih tinggi dari median. Hal ini disebabkan karena terdapat beberapa startup memiliki valuasi yang sangat tinggi sehingga menyebabkan pola distribusi yang cenderung (miring) ke kanan seperti pada Gambar 1b. Sebagian besar startup memiliki valuasi antara 557 juta dan 2.05 miliar. Berdasarkan Tabel 2 terlihat jumlah karyawan yang cukup merata di setiap startup, dengan nilai median yang mendekati nilai mean. Diperoleh bahwa usia startup termuda dan tertua berturut-turut yaitu 3 dan 35 tahun. Rata-rata startup memiliki pangsa pasar sebesar 5.093% dengan nilai terendah yaitu 0.1% dan tertinggi yaitu 10%.

Tabel 2. Statistika Deskriptif


Variabel	Min	Q1 (25%)	Median (50%)	Mean	Q3 (75%)	Max
Pendanaan (M USD)	0.57	79.21	156	152.66	226.45	299.81
Valuasi (M USD)	2.43	557.03	1222.58	1371.81	2052.09	4357.49
Karyawan	12	1383	2496	2532	3709	4984
Market Share (%)	0.1	2.76	5.135	5.093	7.553	10
Umur startup	3	11	19	18.96	27	35

Pada Gambar 2 (a) dan (b), terlihat bahwa *E-Commerce, Cybersecurity*, dan *Gaming* termasuk industri dengan kombinasi pendanaan dan valuasi yang tinggi. Sementara itu, *IoT* masih relatif rendah dalam kedua aspek, kemungkinan karena masih berada pada tahap awal adopsi atau memerlukan bukti nyata terhadap dampaknya.

Gambar 2. Distribusi Berdasarkan Industri: (a) Pendanaan (b) Valuasi

Terlihat bahwa karakteristik pendanaan dan valuasi pada masing-masing industri memiliki pola distribusi yang hampir sama. Namun pada industri health tech dan IoT menunjukkan pola pendanaan yang lebih rendah dibandingkan industri lainnya. Gambar 3. menunjukkan adanya korelasi yang tinggi antara valuasi dan pendanaan, sedangkan korelasi antara usia startup dan pendanaan cenderung rendah.

Gambar 3. Korelasi Antar Variabel

3.2. Pra-Pemprosesan Data

Dilakukan penanganan pencilan (outlier) pada dua variabel dependen, yaitu pendanaan dan valuasi menggunakan metode *Interquartile Range* (IQR), kemudian nilai-nilai pencilan tersebut

E-ISSN 2808-5841 P-ISSN 2808-7283

dihapus untuk menjaga validitas hasil analisis. Setelah itu, proses normalisasi dilakukan pada variabel kovariat, yaitu jumlah karyawan, umur startup, dan *market share*.

3.3. Uji Asumsi MANOVA

Berdasarkan Tabel 3, diperoleh *p-value* untuk uji skewness jauh di bawah 0.05, yang menunjukkan adanya penyimpangan dari distribusi normal multivariat. Sementara itu, nilai kurtosis memberikan hasil yang yang signifikan (*p-value* > 0.05), sehingga pelanggaran terhadap asumsi normalitas tidak sepenuhnya terjadi. Dengan demikian, meskipun asumsi normalitas multivariat tidak sepenuhnya terpenuhi, hasil uji masih berada dalam batas toleransi. Dengan ukuran sampel sebesar 400, analisis MANOVA dan MANCOVA tetap dapat dilanjutkan. Menurut Pallant (2020), ukuran sampel yang besar dapat mengurangi dampak kesalahan sampling dan membuat MANOVA lebih robust terhadap pelanggaran asumsi normalitas [10]. Karena terdapat pelanggaran asumsi normalitas multivariat, maka analisis MANOVA akan menggunakan statistik uji Pillai's Trace sebagai alternatif yang lebih robust dibandingkan Wilks' Lambda.

Tabel 3. Hasil Uji Normalitas

Uji	Statistik	p-value	Keputusan
Mardia Skewness	173.94	1.49×10^{-36}	Tidak normal
Mardia Kurtosis	-1.74	0.0812	Normal

Tabel 4. Hasil Uji Homogenitas

Variabel Independen	Chi-Sq (approx.)	df	p-value	Keputusan
Industri	27.027	21	0.1699	Gagal Tolak H₀
Exit Status	2.3109	6	0.889	Gagal Tolak H₀
Industri x Exit Status	61.067	69	0.7408	Gagal Tolak H₀

Hipotesis awal pada pengujian homogenitas yaitu matriks kovarians dari populasi adalah homogen (sama) untuk semua kelompok. Diperoleh hasil uji Box's M pada Tabel 4. Untuk semua variabel independen (Industri dan Exit.Status), nilai p-value > 0.05, yang berarti tidak ada cukup bukti untuk menolak Ho. Dengan demikian, dapat disimpulkan bahwa asumsi homogenitas matriks kovarians terpenuhi untuk semua variabel independen yang diuji.

Tabel 5. Hasil Uji Dependensi Barlett

	One-Way	MANOVA	Two-Way MANOVA		
	Pendanaan	Valuasi	Pendanaan & Valuasi		
Approx. Chi-Square	1.0183	13.303	13.229		
Df	2	7	23		
Sig.	0.601	0.065	0.947		

Hipotesis awal pada uji dependensi menggunakan Barlett yaitu tidak terdapat korelasi antar variabel dependen. Hasil analisis One-Way dan Two-Way MANOVA menunjukkan bahwa tidak terdapat perbedaan yang signifikan pada variabel pendanaan dan valuasi antara kelompok yang diuji. Nilai signifikansi untuk pendanaan (0,601), valuasi (0,065), maupun gabungan keduanya (0,947) menghasilkan *p-value* lebih dari 0,05. Dengan demkian antar variabel pendanaan dan valuasi tidak terjadi dependensi, namun diasumsikan sehingga dapat dilanjutkan analisis MANOVA.

3.4. Two-Way MANOVA

Tabel 6 berikut menampilkan hasil pengujian two-way MANOVA berdasarkan faktor industri dan exit status. Diperoleh bahwa faktor Industri berpengaruh signifikan terhadap gabungan variabel dependen Funding Amount dan Valuasi, dengan nilai Pillai = 0.0483 dan p-value 0.0476 (p < 0.05). Sementara itu, faktor Exit Status dan efek interaksi tidak menunjukkan pengaruh yang signifikan, masing-masing dengan p-value 0.9377 dan p-value 0.3709. Hal ini menunjukkan bahwa hanya sektor

E-ISSN 2808-5841 P-ISSN 2808-7283

industri yang membedakan secara signifikan kombinasi nilai pendanaan dan valuasi startup. Pada analisis selanjutnya, hanya sektor industri yang menjadi metrik analisis selanjutnya untuk MANOVA.

Tabel 6. Ha	asil Uji	Manova
-------------	----------	--------

Faktor	Pillai	Approx F	df num	df den	p-value
Industri	0.0483	1.7149	14	970	0.0476*
Exit Status	0.0017	0.2012	4	970	0.9377
Industri x Exit Status	0.0610	1.06788	28	950	0.3709

3.5. MANCOVA

Sebelum dilanjutkan analisis MANCOVA, terlebih dahulu dilakukan pengujian homogenitas variable dependen pada setiap kombinasi faktor dan covariat dengan hipotesis awal yaitu tidak terdapat interaksi antara faktor dan kovariat (kemiringan regresi homogen).

Tabel 7. Uji Homogenitas MANCOVA

Variabel Dependen	Faktor × Kovariat	p-value
Pendanaan	Industri × Karyawan	0.437
Valuasi	Industri × Karyawan	0.807
Pendanaan	Industri × Umur startup	0.523
Valuasi	Industri × Umur startup	0.722
Pendanaan	Industri × Market Share	0.088
Valuasi	Industri × Market Share	0.009*

Hasil Tabel 7 menunjukkan bahwa terdapat interaksi signifikan antara *market share* dan Industri terhadap Valuasi, yang berarti asumsi homogenitas kemiringan regresi tidak terpenuhi. Ini dapat mempengaruhi validitas hasil MANCOVA dan perlu dicantumkan sebagai keterbatasan analisis, atau dianalisis secara terpisah per variabel dependen. Berdasarkan hasil uji MANCOVA pada Tabel 8 dengan statistik *Pillai's Trace*, diketahui bahwa variabel *Industri* (p = 0.0454) dan *MarketShare* (p = 0.0437) berpengaruh signifikan terhadap kombinasi *FundingAmount* dan *Valuasi*. Hal ini menunjukkan bahwa jenis industri dan besarnya pangsa pasar startup memengaruhi jumlah pendanaan dan valuasi yang diperoleh. Sementara itu, variabel *Exit Status*, jumlah karyawan, efek interaksi dan umur startup tidak menunjukkan pengaruh yang signifikan (p > 0.05), sehingga dapat disimpulkan bahwa faktorfaktor tersebut tidak secara nyata mempengaruhi kombinasi kedua variabel dependen dalam model ini.

Tabel 8. Hasil Uji Mancova

		3			
Efek	Pillai's Trace	Approx F	Num Df	Den Df	p-value
Industri	0.0500	1.7275	14	944	0.0454*
Exit Status	0.0019	0.2245	4	944	0.9248
Industri × Exit Status	0.0664	1.1583	28	944	0.2615
Karyawan	0.0030	0.7015	2	471	0.4964
Umur Startup	0.0021	0.4841	2	471	0.6166
Market Share	0.0132	3.1525	2	471	0.0437*

3.6. ANCOVA

Pendekatan ini memungkinkan pemeriksaan efek variabel independen dan kovariat secara lebih spesifik, serta membantu mengidentifikasi variabel yang memberikan kontribusi yang signifikan pada setiap variabel dependen. Berdasarkan Tabel 9, dapat diperoleh informasi nilai p-value yang didapatkan lebih dari α (0,05) sehingga dapat disimpulkan bahwa efek variabel independen tidak berpengaruh signifikan terhadap variabel pendanaan. Namun terlihat bahwa faktor industri memberikan p-value yang mendekati 0.05 sehingga dapat dikatakan terdapat pengaruh sginifkan faktor industri terhadap pendanaan. Pada Tabel 10, p-value variabel industri dan market share yang didapatkan lebih dari α (0.05) sehingga disimpulkan bahwa industri dan market share berpengaruh signifikan terhadap valuasi.

E-ISSN 2808-5841 P-ISSN 2808-7283

Tabel 9. Hasil Uji ANCOVA pada Pendanan

Sumber Variasi	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Industri	7	100,294	14,328	1.953	0.0598.
Exit Status	2	6,071	3,036	0.414	0.6613
Karyawan	1	6,815	6,815	0.929	0.3356
Umur Startup	1	5668	5668	0.763	0.3827
Market Share	1	14,670	14,670	2.000	0.1579
Industri × Exit Status	14	146,756	10,483	1.429	0.1351

Tabel 10. Hasil Uji ANCOVA pada Valuasi

Sumber Variasi	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Industri	7	15,738,369	2,248,338	2.381	0.0212*
Exit Status	2	530,024	265,012	0.281	0.7555
Karyawan	1	134,134	134,134	0.142	0.7064
Umur Startup	1	258,453	258,453	0.276	0.5995
Market Share	1	4,932,994	4,932,994	5.223	0.0227 *
Industri × Exit Status	14	9,176,828	655,488	0.694	0.7810

Pada hasil analisis multivariat sebelumnya menunjukkan bahwa hanya variabel *Industri* yang memiliki pengaruh signifikan terhadap kombinasi dua variabel dependen, yaitu pendanaan dan valuasi. Hal tersebut menunjukkan bahwa faktor Industri dapat mempengaruhi besar pendanaan dan valuasi startup berdasarkan analisis statistik. Analisis lebih lanjut dilakukan menggunakan *post-hoc pairwise* pada Tabel 11 menggunakan metode *Tukey's HSD* dengan tingkat signikansi α (0.05).

Tabel 11. Hasil Post-Hoc Tukeys HSD Berdasarkan Faktor Industri

	Pendanaan				Valuasi			
Perbandingan Industri	Estimate	SE	t-ratio	p-value	Estimate	SE	t-ratio	p-value
AI - Cybersecurity	-17.98	16.3	-1.105	0.9555	-346.9	182	-1.909	0.5456
AI - E-Commerce	-26.29	15	-1.752	0.6527	-550.2	168	-3.281	0.0244*
AI - EdTech	-13.18	14.8	-0.889	0.9869	-241.7	166	-1.46	0.8283
AI - FinTech	-25.7	15	-1.718	0.6754	-306.6	167	-1.835	0.5966
AI - Gaming	-32.84	15.5	-2.117	0.4056	-449.1	173	-2.59	0.162
AI - HealthTech	3.41	16.4	0.208	1	-150.3	184	-0.817	0.9921
AI - IoT	6.38	15.5	0.411	0.9999	-112.9	173	-0.651	0.9981
Cybersecurity -E-Commerce	-8.31	15.8	-0.525	0.9995	-203.2	177	-1.148	0.9457
Cybersecurity - EdTech	4.81	15.7	0.307	1	105.3	175	0.601	0.9989
Cybersecurity - FinTech	-7.71	15.8	-0.488	0.9997	40.3	176	0.228	1
Cybersecurity - Gaming	-14.86	16.3	-0.91	0.985	-102.2	182	-0.56	0.9993
Cybersecurity - HealthTech	21.39	17.2	1.243	0.9186	196.7	192	1.022	0.9709
Cybersecurity - IoT	24.36	16.3	1.492	0.8115	234	182	1.283	0.9051
E-Commerce - EdTech	13.12	14.3	0.914	0.9846	308.5	160	1.924	0.5348
E-Commerce - FinTech	0.6	14.5	0.041	1	243.5	162	1.504	0.8054
E-Commerce - Gaming	-6.55	15.1	-0.434	0.9999	101	168	0.6	0.9989
E-Commerce - HealthTech	29.71	16	1.854	0.5836	399.9	179	2.233	0.3338
E-Commerce - IoT	32.67	15.1	2.168	0.373	437.2	168	2.596	0.1597
EdTech - FinTech	-12.52	14.3	-0.876	0.9881	-65	160	-0.407	0.9999
EdTech - Gaming	-19.67	14.9	-1.322	0.8904	-207.4	166	-1.248	0.9171
EdTech - HealthTech	16.59	15.8	1.047	0.9669	91.4	177	0.516	0.9996
EdTech - IoT	19.56	14.9	1.314	0.8933	128.7	166	0.774	0.9943
FinTech - Gaming	-7.15	15	-0.476	0.9998	-142.5	168	-0.849	0.9901
FinTech - HealthTech	29.11	16	1.822	0.6056	156.4	179	0.876	0.9881
FinTech - IoT	32.08	15	2.135	0.3935	193.7	168	1.154	0.9442
Gaming - HealthTech	36.25	16.5	2.197	0.3556	298.9	184	1.62	0.738
Gaming - IoT	39.22	15.6	2.518	0.1904	336.2	174	1.931	0.5302
HealthTech - IoT	2.97	16.5	0.18	1	37.3	184	0.202	1

E-ISSN 2808-5841 P-ISSN 2808-7283

Pada variabel pendanaan, tidak ditemukan perbedaan signifikan per industri (setiap pasang industri memiliki p-value > 0.05). Pada variabel dependen valuasi, menunjukkan satu perbandingan yang signifikan secara statistik, yaitu antara industri AI dan E-Commerce (p-value = 0.0244 < 0.05), yang menunjukkan bahwa startup di sektor E-Commerce memiliki valuasi yang secara signifikan lebih tinggi dibandingkan sektor AI. Kemudian apabila digunakan tingkat signifikansi 0.15, pasangan industri AI-Gaming dan Ecommerce-IoT menunjukkan hasil yang mendekati 0.15. Hal ini menunjukkan bahwa terdapat perbedaan valuasi antara AI dan Gaming serta Ecommerce dan IoT. Hasil ini membuat kesimpulan bahwa pengaruh industri terhadap valuasi startup cenderung lebih besar dibandingkan pengaruhnya terhadap jumlah pendanaan.

Table 12. Signifikansi Parameter Market Share Pada Tiap Variabel Dependen Berdasarkan Industri

Industri	Pendanaan	Valuasi
IoT	0.0388*	0.0105 *
E-Commerce	0.6120	0.0046**
EdTech	0.0532.	0.0552.
Gaming	0.4960	0.0533.
HealthTech	0.4480	0.0739.
AI	0.5207	0.6400
Cybersecurity	0.4990	0.5440
FinTech	0.624	0.9280

Dilakukan analisis lanjutan menggunakan regresi linear untuk masing-masing industri guna mengevaluasi pengaruh *market share* terhadap pendanaan dan valuasi. Tabel 12 diatas menunjukkan hasil signifikansi variabel *market share* terhadap masing-masing variabel dependen. Secara keseluruhan, *Market Share* menunjukkan pengaruh yang signifikan terhadap pendanaan pada industri IoT dan EdTech. Sementara itu, pengaruh *market share* terhadap valuasi menghasilkan nilai yang signifikan hampir di semua industri kecuali AI, cybersecurity, dan fintech. Hal ini menunjukkan bahwa pangsa pasar atau *market share* memiliki peran penting dalam menentukan pendanaan dan valuasi, khususnya di industri IoT dan EdEtch, dibandingkan industri lainnya.

3.7. Analisis berdasarkan Data Lapangan

Analisis lebih lanjut dilakukan untuk mengevaluasi sektor industri mana yang menunjukkan rata-rata pendanaan dan valuasi tertinggi berdasarkan data yang tersedia.

Table 13. Rata-rata Pendanaan dan Valuasi dari masing-masing sektor industri

Industry	Avg_Funding (juta USD)	Avg_Valuation (juta USD)	Jumlah Startup
E-Commerce	164.63	1640.43	70
Gaming	173.15	1584.83	62
Cybersecurity	156.32	1437.18	51
FinTech	164.03	1396.91	71
EdTech	151.52	1331.93	74
HealthTech	134.93	1240.51	49
IoT	131.96	1203.18	61
AI	138.34	1090.26	62

Dari Tabel 13 di atas, terlihat bahwa sektor Gaming memiliki rata-rata pendanaan tertinggi, yaitu sebesar 173,15 juta USD. Tingginya pendanaan pada sektor ini mencerminkan prospek pertumbuhan yang menjanjikan. Hal ini sejalan dengan temuan Politowski dan rekan-rekannya, yang mencatat bahwa proyek-proyek gim berskala besar (AAA) menghadapi tekanan finansial tinggi akibat meningkatnya biaya produksi dan kompleksitas manajemen, sehingga membutuhkan pendanaan dalam jumlah besar [24]. Sementara itu, dari sisi valuasi, sektor E-Commerce menempati posisi tertinggi, yang menunjukkan bahwa startup di sektor ini dinilai memiliki nilai perusahaan yang tinggi oleh investor.

E-ISSN 2808-5841 P-ISSN 2808-7283

Temuan ini konsisten dengan kenyataan bahwa E-Commerce merupakan pilar utama dalam sistem ekonomi Indonesia, mencerminkan pertumbuhan pesat serta keterlibatan konsumen yang tinggi. Faktorfaktor ini berkontribusi pada penilaian yang tinggi terhadap perusahaan rintisan di sektor tersebut, didukung oleh proyeksi nilai transaksi yang menjanjikan [25].

Sektor Internet of Things (IoT) memiliki rata-rata pendanaan yang lebih rendah karena tingginya biaya perangkat keras dan ketergantungan pada impor, yang memicu kebutuhan modal awal besar [26]. Minimnya infrastruktur lokal dan terbatasnya pendanaan dalam negeri membuat investor lebih berhati-hati, sehingga sektor ini kalah bersaing dibandingkan sektor lain yang lebih ringan aset seperti FinTech dan E-Commerce. Valuasi terendah didapati dari sektor *Artificial Intelligence (AI)*, Wu & Liu menyebutkan dalam penelitiannya bahwa tingginya biaya operasional serta kompleksitas kepatuhan regulasi dalam sektor AI membatasi potensi profitabilitas [27]. Kondisi ini membuat investor lebih berhati-hati, sehingga menekan valuasi startup AI di mata pasar.

Sektor industri terbukti memiliki pengaruh yang signifikan terhadap pendanaan dan valuasi startup. Temuan ini sejalan dengan penelitian Berre (2022), yang menyatakan bahwa sektor industri secara substansial memengaruhi minat investor, terutama pada sektor-sektor seperti bioteknologi, fintech, dan energi terbarukan karena memiliki potensi pertumbuhan tinggi serta dampak jangka panjang yang menjanjikan [28]. Selain itu, hasil analisis juga menunjukkan bahwa pangsa pasar turut berperan dalam menentukan besarnya pendanaan dan valuasi startup. Temuan ini didukung oleh studi Berre dan rekannya, yang menekankan bahwa dinamika pasar termasuk penguasaan pangsa pasar mempengaruhi siklus bisnis startup secara keseluruhan, mulai dari daya tarik investasi hingga persepsi valuasi oleh investor [29]. Sektor seperti IoT dan EdTech menjadi sektor tertinggi yang pendanaan dan valuasinya dipengaruhi oleh pangsa pasar, temuan ini diperkuat oleh penelitian Purnomo (2021) dan rekan-rekannya yang menunjukkan bahwa kesiapan teknologi, dukungan manajemen, dan keamanan secara signifikan mendorong adopsi IoT pada startup F&B di Jawa Barat [30]. Tingginya tingkat adopsi ini memperkuat daya saing serta posisi pasar startup IoT, sehingga wajar apabila market share di sektor ini memberikan pengaruh signifikan terhadap tingkat pendanaan dan valuasi yang diperoleh.

IV. KESIMPULAN

Hasil analisis menunjukkan bahwa industri dan market share (pangsa pasar) berpengaruh secara signifikan terhadap kombinasi pendanaan dan valuasi startup. Variabel lainnya yaitu *exit status*, jumlah karyawan, dan umur startup tidak memberikan pengaruh yang signifikan terhadap pendanaan dan valuasi. Setelah analisis dilanjutkan secara parsial untuk setiap variable dependen, pengaruh industri dan market share terhadap valuasi startup cenderung lebih besar dibandingkan pengaruhnya terhadap jumlah pendanaan. Khususnya, startup di sektor E-Commerce memiliki valuasi yang secara signifikan lebih tinggi dibandingkan dengan sektor Artificial Intelligence (AI). Temuan ini mengindikasikan bahwa valuasi startup lebih dipengaruhi oleh konteks industri. Analisis pada setiap industri menunjukkan bahwa pengaruh *market share* bersifat kontekstual. Secara keseluruhan *market share* pada industri IoT memberikan pengaruh yang signifikan terhadap masing-masing variabel pendanaan dan valuasi. Sementara itu, hanya industri ecommerce yang menunjukkan hasil signifikan pada analisis regresi *market share* terhadap valuasi.

Secara praktis, investor disarankan untuk lebih selektif dalam memilih sektor untuk investasi, dengan mempertimbangkan sektor-sektor seperti E-Commerce, Internet of Things (IoT), dan Gaming yang menunjukkan valuasi tinggi serta sensitivitas valuasi terhadap market share. Untuk penelitian selanjutnya, disarankan untuk mengeksplorasi faktor-faktor lain yang dapat memengaruhi pendanaan dan valuasi startup, seperti tingkat adopsi teknologi, regulasi pemerintah, serta dinamika pasar digital.

E-ISSN 2808-5841 P-ISSN 2808-7283

Selain itu, pendekatan analisis data panel atau analisis berbasis waktu sangat dianjurkan untuk menggambarkan perubahan dan perkembangan pendanaan serta valuasi startup secara bertahap dari waktu ke waktu. Metode ini memungkinkan peneliti untuk menangkap efek dinamis dan variasi antar startup secara lebih akurat, sehingga memberikan pemahaman yang lebih mendalam mengenai faktorfaktor yang memengaruhi performa startup dalam konteks waktu yang berbeda.

REFERENSI

- M. Bakhar et al., PERKEMBANGAN STARTUP DI INDONESIA (Perkembangan Startup di Indonesia dalam [1] berbagai bidang). no. Mav. 2023. [Online]. https://books.google.com/books?hl=en&lr=&id=MR7eEAAAQBAJ&oi=fnd&pg=PA44&dq=pentingnya+pemaha man+terhadap+kekayaan+budaya+dalam+negeri+menjadi+lebih+kritis+karena+adanya+risiko+bahwa+%22nilai+n ilai%22+budaya+daerah+dapat+terpinggirkan+oleh+arus+informasi+g
- S. Ranking, "Startup Ranking by Country," 2025. [Online]. Available: https://www.startupranking.com/countries
- [2] [3] K. M. Kennedy et al., "Rapid rise in corporate climate-tech investments complements support from public grants," Nat. Energy, vol. 9, no. 7, pp. 773–774, 2024, doi: 10.1038/s41560-024-01554-2.
- [4] R. A. Fauzianto and Supatman, "Analisis Sentimen Opini Masyarakat Terhadap Tech Winter Pada Twitter Menggunakan Natural Language Processing," J. Syntax Admiration, vol. 3, no. 9, pp. 1577-1585, 2023, doi: 10.46799/jsa.v3i9.909.
- E. Y. A. Jonnardi, "Pengaruh Profitabilitas, Likuiditas, Dan Solvabilitas Terhadap Nilai Perusahaan," J. Paradig. [5] Akunt., vol. 2, no. 3, p. 1057, 2020, doi: 10.24912/jpa.v2i3.9531.
- L. Floridi, "AI and Its New Winter: from Myths to Realities," Philos. Technol., vol. 33, no. 1, pp. 1-3, 2020, doi: [6] 10.1007/s13347-020-00396-6.
- [7] J. Pacheco and N. Wagner, "Long-term impacts of an early childhood shock on human capital: Evidence from the 1999 economic crisis in Ecuador," Heal. Econ. (United Kingdom), vol. 32, no. 11, pp. 2460-2476, 2023, doi: 10.1002/hec.4742.
- B. Beyhan and D. Findık, "Selection of Sustainability Startups for Acceleration: How Prior Access to Financing and [8] Team Features Influence Accelerators' Selection Decisions," Sustain., vol. 14, no. 4, 2022, doi: 10.3390/su14042125.
- L. Judijanto, "PERKEMBANGAN STARTUP DIGITAL DI INDONESIA: wirausahawan untuk mengembangkan [9] bisnis berbasis teknologi . Startup digital, dengan model," vol. 4, no. 5, pp. 2011–2032, 2024.
- [10] W. Songpan and P. Kijkasiwat, "Factor analysis and prediction of startups and ways to exit based on decision tree classification models with adaptive k with SMOTE method for imbalance problem," Sci. Eng. Heal. Stud., vol. 17, 2023, doi: 10.69598/sehs.17.23040007.
- C. Ziakis, M. Vlachopoulou, and K. Petridis, "Start-Up Ecosystem (StUpEco): A Conceptual Framework and [11] Empirical Research," J. Open Innov. Technol. Mark. Complex., vol. 8, no. 1, 2022, doi: 10.3390/joitmc8010035.
- K. A. Almurshidee, "Market Share as a Firm Driver: Important Strategic Implications from Reviewing Literature [12] from 1974-1995," Bus. Manag. Strateg., vol. 15, no. 1, p. 170, 2024, doi: 10.5296/bms.v15i1.21499.
- M. Khairani et al., "Jurnal Penelitian Sains," vol. 26, no. 2, pp. 189–196, 2024. [13]
- [14] A. Maharani, A. E. Putri, S. P. Wulandari, D. S. Bisnis, and K. Hidup, "Multi Proximity: Jurnal Statistika Universitas Jambi Pengaruh Kepadatan Penduduk terhadap Kualitas Hidup Masyarakat di Indonesia Tahun The Effect of Population Density on the Quality of Life in Indonesia in 2023 Using the masyarakat Indonesia [2]. Kese," vol. 3, no. 2, pp. 68-79, 2024.
- [15] A. J. Hibatullah, N. H. Hemalina, and G. B. E, "Kohesi: Jurnal Multidisiplin Saintek Volume 7 No 8 Tahun 2025 ANALISIS JUMLAH PENDUDUK TENAGA KERJA INDUSTRI DI JAWA TIMUR BERDASARKAN TAHUN 2017-2018, DENGAN MENGGUNAKAN METODE RM Program Studi Sains Data, Fakultas Ilmu Komputer, Universitas Pembangu," vol. 7, no. 8, pp. 1–14, 2025.
- A. Of, E. Funding, E. Differences, B. Sma, and S. M. K. S. In, "Analysis of education funding allocation and student [16] enrollment differences between sma and smk students in indonesia: rm manova approach," vol. 04, no. 01, pp. 167-
- R. ALBAYRAK DELİALİOĞLU and Z. KOCABAS, "Use of Multidimensional Scaling Analysis Together With [17] Multivariate Analysis of Variance in Determining Differences Between Groups," Kahramanmaraş Sütçü İmam *Universitesi Tarım ve Doğa Derg.*, vol. 26, no. 1, pp. 201–209, 2023, doi: 10.18016/ksutarımdoga.vi.984229.
- D. A. P. H. Ni Made Ratna Sintya Dewi, I Gede Astawan, "PENGARUH MODEL PEMBELAJARAN [18] COOPERATIVE INTEGRATED READING AND COMPOSITION BERBASIS TRI KAYA PARISUDHA TERHADAP KETERAMPILAN MEMBACA DAN HASIL BELAJAR BAHASA INDONESIA SISWA KELAS V SD GUGUS I KECAMATAN JEMBRANA TAHUN PELAJARAN 2022/2023," Didakt. J. Ilm. PGSD FKIP Univ. Mandiri, vol. 2614, pp. 1-23, 2023.
- D. Morisson, "Multivariate Statistical Methods (Second Edition).," United State Am. Whart. Sch. Univ. [19] Pennsylvania., 2005.
- [20] I. Kadek Agustian Bayu Atmajaya, K. Suma, and A. A. I A Rai Sudiatmika, "Pengaruh Pembelajaran Berbasis Proyek yang Difasilitasi dengan E-learning terhadap Keterampilan Proses dan Hasil Belajar Sains," vol. 15, no. 3, pp. 1858-0629, 2021.

E-ISSN 2808-5841 P-ISSN 2808-7283

- [21] M. Baumeister, M. Ditzhaus, and M. Pauly, "Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs," *J. Multivar. Anal.*, vol. 199, p. 105246, 2024, doi: 10.1016/j.jmva.2023.105246.
- [22] L. A. Hothorn and F. Schaarschmidt, "A Tukey type trend test for repeated carcinogenicity bioassays, motivated by multiple glyphosate studies," pp. 1–11, 2020, [Online]. Available: http://arxiv.org/abs/2007.04009
- [23] M. Yusuf Alwy, Herman, T. H, A. Abraham, and H. Rukmana, "Analisis Regresi Linier Sederhana dan Berganda Beserta Penerapannya," *J. Educ.*, vol. 06, no. 02, pp. 13331–13344, 2024.
- [24] C. Politowski, F. Petrillo, G. C. Ullmann, J. De Andrade Werly, and Y. G. Guéhéneuc, "Dataset of Video Game Development Problems," Proc. 2020 IEEE/ACM 17th Int. Conf. Min. Softw. Repos. MSR 2020, no. June, pp. 553–557, 2020, doi: 10.1145/3379597.3387486.
- [25] J. Zakaria, "Peran E-Commerce Dalam Pembangunan Ekonomi Daerah Di Indonesia," J. Ekon. Pembang. STIE Muhammadiyah Palopo, vol. 10, no. 1, p. 142, 2024, doi: 10.35906/jep.v10i1.1927.
- [26] T. R. Fauzan and W. Dhewanto, "Fostering innovation through Industry 4.0 technologies in emerging countries: An explorative multiple case study of Indonesian Internet-of-Things (IoT)-based start-ups," *J. Res. Emerg. Mark.*, vol. 3, no. 2, pp. 71–85, 2021, doi: 10.30585/jrems.v3i2.628.
- [27] W. Wu and S. Liu, "Compliance Costs of AI Technology Commercialization: A Field Deployment Perspective," ArXiv, 2023.
- [28] M. Berre, W. Factors, M. Most, and C. Startup, "Which Factors Matter Most? Can Startup Valuation be To cite this version: HAL Id: hal-03829877 Which Factors Matter Most? Can Startup Valuation be Micro-Targeted? 1," 2022.
- [29] M. Berre and B. Le Pendeven, "Business-cycles and Cash-on-Market: Pre-money Startup Valuation in the Macroeconomic Environment," SSRN Electron. J., pp. 1–56, 2022, doi: 10.2139/ssrn.4286910.
- [30] M. Purnomo, E. Maulina, A. R. Wicaksono, and M. Rizal, "Adopsi Teknologi Internet of Things pada Startup Industri F&B," *Techno.Com*, vol. 20, no. 3, pp. 342–351, 2021, doi: 10.33633/tc.v20i3.4824.